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1 Introduction

We present a technique for inducing functional programs from few, only positive,
well chosen input/output-examples (I/O-examples). Inductive program synthesis
systems (see [1] for classical systems, [2] for systems in the field of inductive logic
programming) can be devided into two general approaches: (i) In the generate-
and-test approach (e.g., ADATE [3]), programs of a defined class are enumerated
heuristically and then tested against given examples. (ii) In the analytical ap-
proach (e.g., [4]), programs of a defined class are derived by analyzing given
examples w.r.t. recurrent structures which are then generalized to a recursive
function. Analytical approaches cover more restricted program classes but are
faster than generate-and-test approaches. These characteristics qualify them for
end-user programming or assisting systems whereas generate-and-test methods
are more qualified for inventing new and efficient algorithms.

The analytical method presented here is in several aspects more general than
other analytical techniques. E.g., (i) there is no restriction to a particular pro-
gramming language nor to “hard-wired” data-types, (ii) tree-recursion is allowed,
(iii) a function can be defined by any number of recursive cases and of base cases.

Programs are represented as (confluent and terminating) constructor term
rewriting systems (CSs), i.e., as a set of (recursive) rewrite rules which corre-
sponds to the equations defined within a functional program. A CS of the defined
class (see Sec. 2) can be compiled to any functional programming language or
to Prolog. For a rule F (t1, . . . , tn) → r, F (t1, . . . , tn) and r are called left-hand
side (lhs) and right-hand side (rhs) resp., F is called defined function, and all
other function symbols are called constructors. A term t subsumes a term s iff
the variables in t can be substituted such that the result is s. We say that s is
an instance of t and that t is a generalization of s. A CS computes an output
(term) from a given input (term) by successively rewriting instantiations of lhss
with instantiations of rhss in a term until there is no more intantiation of a lhs.

2 Inducing CSs from I/O-examples

The class of CSs which can be induced is characterized as follows: (i) A CS con-
tains exactly one defined function F with exactly one parameter, called pattern,
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(ii) each rhs contains an arbitrary number of occurences of the defined function
symbol F (tree-recursion), (iii) recursive calls are not nested. We call the class of
CSs matching this schema flat one-function one-parameter CSs (flat-1-1 CSs).
Examples and experimental results for inducing them are given in Section 3.

The induction is based on the insight that there are regularities between
different I/O-pairs of a recursively defined function. For an example, consider
the function Unpack which returns a list as output in which each element of
the input list is encapsulated in a one element list. Unpack is computed by the
following CS:

Unpack([]) → []
Unpack([q|qs]) → [[q]|Unpack(qs)]

Now consider the input [a, b, c] which is computed to the output [[a], [b], [c]].
Unpack([a, b, c]) leads to the recursive call Unpack([b, c]), i.e., [b, c] is again an
input and is computed to the output [[b], [c]]. We have derived a second I/O-
pair and the regularity is that the output [b, c] is the subterm of [a, b, c] at the
same position, 2, at which the recursive call in the rhs occured. This regularity—
outputs of recursive calls are subterms of the output of the original call at those
positions where the recursive calls occured—holds for all flat-1-1 CSs.

Induction of a consistent CS is organized in two levels as follows: At the
higher level, patterns of rules are searched for. Each pattern determines the lhs
of a rule. At a second level, an rhs is computed for each pattern.

Consider the three I/O-examples [] → [], [x] → [[x]], [x, y] → [[x], [y]] for
Unpack . The search for patterns starts with one pattern, namely with the least
general generalization (lgg) of all example inputs, i.e., with the most specific term
subsuming all example inputs. The lgg of the example inputs for Unpack is simply
a variable q. If a rhs is not found, then the lgg will be replaced by a minimum
number of at least two patterns such that the new patterns (i) together subsume
all example inputs, (ii) partition the inputs (into at least two disjoint subsets),
and (iii) are lggs of the subsets of inputs which they respectively subsume. We
call the new set of patterns most generally partitioning lggs (mgpls). For the
Unpack -example, the new patterns are [] and [q|qs]. If no rhs will be found for
at least one of them, then all unsucessful patterns are again replaced by a set
of mgpls and so on. The search is organized such that a consistent CS with a
minimal number of rules will be found.

For computing the rhs for a pattern p, the following three cases are checked
in the stated order for each position u in order from left to right of all considered
outputs in parallel: The subterm of the rhs at position u is

1. a variable contained in p (subterms of outputs are not considered any fur-
ther),

2. a recursive call (subterms of outputs are not considered any further),
3. a term with a constructor as root.

There exists no other case, thus, if for any position none of the three cases
succeed, then no rhs leading to a consistent CS exists and a new set of patterns
has to be searched for.
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function #expls #rules(#rec) #rec. calls times in sec

Length 3 2(1) 1 .002

Last 3 2(1) 1 .003

Init 3 2(1) 1 .003

Unpack 3 2(1) 1 .003

IncList 3 2(1) 1 .003

Even 4 3(1) 1 .004

TreeRev 4 2(1) 2 .008

Lasts 5 3(2) 1 .022

DelZeros 6 3(2) 1 .042

PlayTennis 14 5(0) 0 .679
Table 1. Some inferred functions

3 Experimental Results and Further Research

We have implemented the algorithm in the rewriting based language Maude [5].
In Table 1 we have listed experimental results for sample problems. The second
column lists the number of given I/O-pairs, the third the total number of induced
rules and in parentheses the number of induced recursive rules, the fourth the
maximal number of recursive calls within one rule, and the fifth the synthesis
time. The experiments were performed on a P4 with the Maude 2.2 interpreter.

All induced programs are correct. Length, Last , and Init are standard func-
tions on lists, Unpack is described in Sec. 2, IncList applies the successor function
to each number in a list, Even checks whether a natural number is even, TreeRev
reverses a binary tree. An example for Lasts is Lasts([[a, b], [c, d, e], [f ]]) = [b, e, f ].
DelZeros deletes all 0s from a list. Finally, PlayTennis is an attribute vector con-
cept learning example from Mitchell’s machine learning text book [6].

Further research will include the integration of techniques for automatical
introduction of subfunctions and additional parameters into induced programs.
Such techniques have been invented for other analytical methods.
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