
An Explanation Based Generalization Approach to Inductive Synthesis of
Functional Programs

Emanuel Kitzelmann EMANUEL.KITZELMANN@WIAI.UNI-BAMBERG.DE

Ute Schmid UTE.SCHMID@WIAI.UNI-BAMBERG.DE

Department of Information Systems and Applied Computer Science, Otto-Friedrich-University, Bamberg

Abstract
We describe an approach to the inductive syn-
thesis of recursive equations from input/output-
examples which is based on the classical two-
step approach to induction of functional Lisp
programs of Summers (1977). In a first step, I/O-
examples are rewritten to traces which explain
the outputs given the respective inputs based on
a datatype theory. This traces can be integrated
into one conditional expression which represents
a non-recursive program. In a second step, this
initial program term is generalized into recursive
equations by searching for syntactical regulari-
ties in the term. Our approach extends the classi-
cal work in several aspects. The most important
extensions are that we are able to induce a set of
recursive equations in one synthesizing step, the
equations may contain more than one recursive
call, and additionally needed parameters are au-
tomatically introduced.

1. Introduction

Automatic induction of recursive programs from
input/output-examples (I/O-examples) is an active area of
research since the sixties and of interest for AI research
as well as for software engineering (Lowry & McCarthy,
1991; Flener & Partridge, 2001). In the seventies and
eighties, there were several approaches to the synthesis
of Lisp programs from examples or traces (see Biermann
et al., 1984 for an overview). The most influential approach
was developed by Summers (1977), who put inductive
synthesis on a firm theoretical foundation.

Summers’ early approach is an explanation based gener-
alization (EBG) approach, thus it widely relies on algo-
rithmic processes and only partially on search: In a first
step, traces—steps of computations executed from a pro-
gram to yield an output from a particular input—and predi-
cates for distinguishing the inputs are calculated for each
I/O-pair. Construction of traces, which are terms in the

classical functional approaches, relies on knowledge of the
inductive datatype of the inputs and outputs. That is, traces
explain the outputs based on a theory of the used datatype
given the respective inputs. The classical approaches for
synthesizing Lisp-programs used the general Lisp datatype
S-expression. By integrating traces and predicates into a
conditional expression a non-recursive program explaining
all I/O-examples is constructed as result of the first syn-
thesis step. In a second step, regularities are searched for
between the traces and predicates respectively. Found reg-
ularities are then inductively generalized and expressed in
form of the resulting recursive program.

The programs synthesized by Summers’ system contain ex-
actly one recursive function, possibly along with one con-
stant term calling the recursive function. Furthermore, all
synthesizable functions make use of a small fixed set of
Lisp-primitives, particularly of exactly one predicate func-
tion, atom, which tests whether its argument is an atom,
e.g., the empty list. The latter implies two things: First,
that Summers’ system is restricted to induce programs for
structural problems on S-expressions. That means, that ex-
ecution of induced programs depends only on the structure
of the input S-expression, but never on the semantics of the
atoms contained in it. E.g., reversing a list is a structural
problem, yet not sorting a list. The second implication is,
that calculation of the traces is a deterministic and algorith-
mic process, i.e. does not rely on search and heuristics.

Due to only limited progress regarding the class of pro-
grams which could be inferred by functional synthesis,
interest decreased in the mid-eighties. There was a re-
newed interest of inductive program synthesis in the field
of inductive logic programming (ILP) (Flener & Yilmaz,
1999; Muggleton & De Raedt, 1994), in genetic program-
ming and other forms of evolutionary computation (Olsson,
1995) which rely heavily on search.

We here present an EBG approach which is based on the
methodologies proposed by Summers (1977). We regard
the functional two-step approach as worthwhile for the fol-
lowing reasons: First, algebraic datatypes provide guid-

An Explanation Based Generalization Approach to Inductive Synthesis of Functional Programs

ance in expressing the outputs in terms of the inputs as first
synthesis step. Second, it enables a seperate and thereby
specialized handling of a knowledge dependent part and a
purely syntactic driven part of program synthesis. Third,
both using algebraic datatypes and seperating a knowledge-
dependent from a syntactic driven part enables a more ac-
curate utilization of search than in ILP or evolutionary pro-
gramming. Fourth, the two-step approach using algebraic
datatypes provides a systematic way to introduce auxiliary
recursive equations if necessary.

Our approach extends Summers in several important as-
pects, such that we overcome fundamental restrictions of
the classical approaches to induction of Lisp programs:
First, we are able to induce a set of recursive equations in
one synthesizing step, second, the equations may contain
more than one recursive call, and third, additionally needed
parameters are automatically introduced. Furthermore, our
generalization step is domain-independent, in particular in-
dependent from a certain programming language. It takes
as input a first-order term over an arbitrary signature and
generalizes it to a recursive program scheme, that is, a set
of recursive equations over that signature. Hence it can
be used as learning component in all domains which can
represent their objects as recursive program schemes and
provide a system for solving the first synthesis step. E.g.,
we use the generalization algorithm for learning recursive
control rules for AI planning problems (cp. Schmid &
Wysotzki, 2000; Wysotzki & Schmid, 2001).

2. Central Concepts and an Example

The three central objects dealt with by our system are
(1) sets of I/O-examples specifying the algorithm to be
induced, (2) initial (program) terms explaining the I/O-
examples, and (3) recursive program schemes (RPSs) rep-
resenting the induced algorithms. Their functional role in
our two-step synthesis approach is shown in Fig. 1.

An example for I/O-examples is given in Tab. 1. The exam-
ples specify the lasts function which takes a list of lists as
input and yields a list of the last elements of the lists as out-
put. In the first synthesis step, an initial term is constructed
from these examples. An initial term is a term respecting an
arbitrary first-order signature extended by the special con-
stant symbol Ω, meaning the undefined value and directing
generalization in the second synthesis step. Suitably in-
terpreted, an initial term evaluates to the specified output
when its variable is instantiated with a particular input of
the example set and to undefined for all other inputs.

Tab. 2 gives an example of an initial term. It shows the re-
sult of applying the first synthesis step to the I/O-examples
for the lasts function as shown in Tab. 1. if means the 3ary
non-strict function which returns the value of its second pa-

Table 1. I/O-examples for lasts

[] 7→ [],
[[a]] 7→ [a],

[[a,b]] 7→ [b],
[[a,b,c]] 7→ [c],

[[a,b,c,d]] 7→ [d],
[[a], [b]] 7→ [a,b],

[[a], [b,c]] 7→ [a,c],
[[a,b], [c], [d]] 7→ [b,c,d],

[[a,b], [c,d], [e, f]] 7→ [b,d, f],
[[a], [b], [c], [d]] 7→ [a,b,c,d]

rameter if its first parameter evaluates to true and otherwise
returns the value of its third parameter; empty is a predicate
which tests, whether its argument is the empty list; hd and
tl yield the first element and the rest of a list respectively;
cons constructs a list from one element and a list; and []
denotes the empty list.

Table 2. Initial term for lasts
if(empty(x), [],
cons(
hd(
if(empty(tl(hd(x))), hd(x),
if(empty(tl(tl(hd(x)))), tl(hd(x)),
if(empty(tl(tl(tl(hd(x))))), tl(tl(hd(x))),

Ω)))) ,
if(empty(tl(x)), [],
cons(
hd(
if(empty(tl(hd(tl(x)))), hd(tl(x)),

Ω)) ,
if(empty(tl(tl(x))), [],
cons(
hd(
if(empty(tl(hd(tl(tl(x))))), hd(tl(tl(x))),

Ω)) ,
if(empty(tl(tl(tl(x)))), [],

Ω)))))))

Calculation of initial terms relies on knowledge of the
datatypes of the example inputs and outputs. For our exem-
plary lasts program inputs and outputs are lists. Lists are
uniquely constructed by means of the empty list [] and the
constructor cons. Furthermore they are uniquely decom-
posed by the functions hd and tl. That allows to calculate
a unique term which expresses an example output in terms
of the input. For example, consider the third I/O-example
from Tab. 1: If x denotes the input [[a,b]], then the term
cons(hd(tl(hd(x))), []) expresses the specified output [b] in
terms of the input. Such traces are constructed for each
I/O-pair. The overall concept for integrating the resulting
traces into one initial term is to go through all traces in par-
allel position by position. If the same function symbol is
contained at the current position in all traces, then it is in-

An Explanation Based Generalization Approach to Inductive Synthesis of Functional Programs

I/O-examples

1. Step: Explanation,

based on knowledge of datatypes
−−−−−−−−−−−−−−−−−−−→ Initial Term

2. Step: Generalization,

purely syntactic driven
−−−−−−−−−−−−−−−→ Recursive Program Scheme

Figure 1. Two synthesis steps

troduced to the initial term at this position. If at least two
traces differ at the current position, then it is introduced an
if -expression. Therefore a predicate function is calculated
to discriminate the inputs according to the different traces.
Construction of the initial term proceeds from the discrim-
inated inputs and traces for the second and third branch of
the if -tree respectively. We describe the calculation of ini-
tial terms from I/O-examples, i.e. the first synthesis step,
in Sec. 4.

In the second synthesis step, initial ground terms are gener-
alized to a recursive program scheme. Initial terms are con-
sidered as (incomplete) unfoldings of an RPS which is to be
induced by generalization. An RPS is a set of recursive
equations whose left-hand-sides consist of the names of
the equations followed by their parameter lists and whose
right-hand-sides consist of terms over the signature from
the initial terms, the set of the equation names, and the pa-
rameters of the equations. One equation is distinguished
to be the main one. An example is given in Tab. 3. This
RPS, suitably interpreted, computes the lasts function as
described above and specified by the examples in Tab. 1. It

Table 3. Recursive Program Scheme for lasts

lasts(x) = if(empty(x), [],

cons(hd(last(hd(x))), lasts(tl(x))))

last(x) = if(empty(tl(x)),x, last(tl(x)))

results from applying the second synthesis step to the ini-
tial term shown in Tab. 2. Note that it is a generalization
from the initial term in that it not merely computes the lasts
function for the example inputs but for input-lists of arbi-
trary length containing lists of arbitrary length.

The second synthesis step does not depend on domain
knowledge. The meaning of the function symbols is irrel-
evant, because the generalization is completely driven by
detecting syntactical regularities in the initial terms. To
understand the link between initial terms and RPSs in-
duced from them, we consider the process of incremen-
tally unfolding an RPS. Unfolding of an RPS is a (non-
deterministic and possibly infinite) rewriting process which
starts with the instantiated head of the main equation of an
RPS and which repeatedly rewrites a term by substituting
any instantiated head of an equation in the term with ei-
ther the equally instantiated body or with the special sym-

bol Ω. Unfolding stops, when all heads of recursive equa-
tions in the term are rewritten to Ω, i.e., the term contains
no rewritable head any more. Consider the last equation
from the RPS shown in Tab. 3 and the initial instantia-
tion {x 7→ [a,b,c]}. We start with the instantiated head
last([a,b,c]) and rewrite it to the term:

if(empty(tl([a,b,c])), [a,b,c], last(tl([a,b,c])))

This term contains the head of the last equation instantiated
with {x 7→ tl([a,b,c])}. When we rewrite this head again
with the equally instantiated body we obtain:

if(empty(tl([a,b,c])), [a,b,c],

if(empty(tl(tl([a,b,c]))), tl([a,b,c]),

last(tl(tl([a,b,c]))))

This term now contains the head of the equation instanti-
ated with {x 7→ tl(tl([a,b,c]))}. We rewrite it once again
with the instantiated body and then replace the head in the
resulting term with Ω and obtain:

if(empty(tl([a,b,c])), [a,b,c],

if(empty(tl(tl([a,b,c]))), tl([a,b,c]),

if(empty(tl(tl(tl([a,b,c])))), tl(tl([a,b,c])),Ω)))

The resulting finite term of a finite unfolding process is also
called unfolding. Unfoldings of RPSs contain regularities
if the heads of the recursive equations are more than once
rewritten with its bodies before they are rewritten with Ωs.
The second synthesis step is based on detecting such regu-
larities in the initial terms.

We describe the generalization of initial terms to RPSs in
the following section. The reason why we first describe the
second synthesis step and only afterwards the first synthesis
step is, that the latter is governed by the goal of construct-
ing a term which can be generalized in the second step.
Therefore, for understanding the first step, it is necessary
to know the connection between initial terms and RPSs as
established in the second step.

3. Generalizing an Initial Term to an RPS

Since our generalization algorithm exploits the relation be-
tween an RPS and its unfoldings, in the following we will
first introduce the basic terminology for terms, substitu-
tions, and term rewriting as for example presented in Der-
showitz and Jouanaud (1990). Then we will present defi-
nitions for RPSs and the relation between RPSs and their

An Explanation Based Generalization Approach to Inductive Synthesis of Functional Programs

unfoldings. The set of all possible RPSs constitutes the
hypothesis language for our induction algorithm. Some
restrictions on this general hypothesis language are intro-
duced and finally, the componentes of the generalization
algorithm are described.

3.1. Preliminaries

We denote the set of natural numbers starting with 0 by N

and the natural numbers greater 0 by N+. A signature Σ
is a set of (function) symbols with α : Σ→ N giving the
arity of a symbol. We write TΣ for the set of ground terms,
i.e. terms without variables, over Σ and TΣ(X) for the set
of terms over Σ and a set of variables X . We write TΣ,Ω
for the set of ground terms—called partial ground terms—
constructed over Σ∪ {Ω}, where Ω is a special constant
symbol denoting the undefined value. Furthermore, we
write TΣ,Ω(X) for the set of partial terms constructed over
Σ∪{Ω} and variables X . With T ∞

Σ,Ω(X) we denote the set of
inifinite partial terms over Σ and variables X . Over the sets
TΣ,Ω, TΣ,Ω(X) and T ∞

Σ,Ω(X) a complete partial order (CPO)
≤ is defined by: a) Ω≤ t for all t ∈ TΣ,Ω,TΣ,Ω(X),T ∞

Σ,Ω(X)

and b) f (t1, . . . , tn)≤ f (t ′1, . . . , t
′
n) iff ti ≤ t ′i for all i ∈ [1;n].

Terms can uniquely be expressed as labeled trees: If a term
is a constant symbol or a variable, then the corresponding
tree consists of only one node labeled by the constant sym-
bol or variable. If a term has the form f (t1, . . . , tn), then
the root node of the corresponding tree is labeled with f
and contains from left to right the subtrees corresponding
to t1, . . . , tn. We use the terms tree and term as synonyms.
A position of a term/tree is a sequence of positive natural
numbers, i.e. an element from N

∗
+ . The set of positions

of a term t, denoted pos(t), contains the empty sequence ε
and the position iu, if the term has the form t = f (t1, . . . , tn)
and u is a position from pos(ti), i ∈ [1;n]. Each position
of a term uniquely denotes one subterm. We write t|u for
denoting that subterm which is determined as follows: (a)
t|ε = t, (b) if t = f (t1, . . . , tn) and u is a position in ti, then
t|iu = ti|u, i ∈ [1;n]. We say that position u is smaller than
position u′, u ≤ u′, if u is a prefix of u′. If u is a position
of term t and u′ ≤ u, then u′ is a position of t. For a term t
and a position u, node(t,u) denotes the fixed symbol f ∈ Σ,
if t|u = f (t1, . . . , tn) or t|u = f respectively. The set of all
positions at which a fixed symbol f appears in a term is de-
noted by pos(t, f). The replacement of a subterm t|u by a
term s in a term t at position u is written as t[u← s]. Let U
denote a set of positions in a term t. Then t[U← s] denotes
the replacement of all subterms t|u with u ∈U by s in t.

A substitution σ is a mapping from variables to terms. Sub-
stitutions are naturally continued to mappings from terms
to terms by σ(f (t1, . . . , tn)) = f (σ(t1), . . . ,σ(tn)). Substi-
tutions are written in postfix notation, i.e. we write tσ in-
stead of σ(t). Substitutions β : X → TΣ from variables to

ground terms are called (variable) instantiations. A term p
is called pattern of a term t, iff t = pσ for a substitution σ .
A pattern p of a term t is called trivial, iff p is a variable
and non-trivial otherwise. We write t ≤s p iff p is a pattern
of t and t <s p iff additionally holds, that p and t can not
be unified by variable renaming only.

A term rewriting system (TRS) over Σ and X is a set of
pairs of terms R ⊆ TΣ(X)×TΣ(X). The elements (l,r) of
R are called rewrite rules and are written l→ r. A term t ′

can be derived in one rewrite step from a term t using R

(t→R t ′), if there exists a position u in t, a rule l→ r ∈R,
and a substitution σ : X → TΣ(X), such that (a) t|u = lσ
and (b) t ′ = t[u← rσ]. R implies a rewrite relation→R⊆
TΣ(X)×TΣ(X) with (t, t ′) ∈→R if t→R t ′.

3.2. Recursive Program Schemes

Definition 1 (Recursive Program Scheme). Given a sig-
nature Σ, a set of function variables Φ = {G1, . . . ,Gn} for
a natural number n > 0 with Σ∩Φ = /0 and arity α(Gi) > 0
for all i ∈ [1;n], a natural number m ∈ [1;n], and a set of
equations

G =

{ G1(x1, . . . ,xα(G1)) = t1,

...

Gn(x1, . . . ,xα(Gn)) = tn }

where the ti are terms with respect to the signature Σ∪Φ
and the variables x1, . . . ,xα(Gi), S = (G ,m) is an RPS.
Gm(x1, . . . ,xα(Gm)) = tm is called the main equation of S .

The function variables in Φ are called names of the equa-
tions, the left-hand-sides are called heads, the right-hand-
sides bodies of the equations. For the lasts RPS shown in
Tab. 3 holds: Σ = {if ,empty,cons,hd, tl, []}, Φ = {G1,G2}
with G1 = lasts and G2 = last, and m = 1. G is the set of
the two equations.

We can identify a TRS with an RPS S = (G ,m):

Definition 2 (TRS implied by an RPS). Let be S =
(G ,m) an RPS over Σ, Φ and X , and Ω the bottom sym-
bol in TΣ,Ω(X). The equations in G constitute rules RS =
{Gi(x1, . . . ,xα(Gi)) → ti | i ∈ [1;n]} of a term rewriting
system. The system additionally contains rules RΩ =
{Gi(x1, . . . ,xα(Gi))→Ω | i ∈ [1;n], Gi is recursive}.

The standard interpretation of an RPS, called free interpre-
tation, is defined as the supremum in T ∞

Σ,Ω(X) of the set
of all terms in TΣ,Ω(X) which can be derived by the im-
plied TRS from the head of the main equation. Two RPSs
are called equivalent, iff they have the same free interpre-
tation, i.e. if they compute the same function for every in-
terpretation of the symbols in Σ. Terms in TΣ,Ω which can
be derived by the instantiated head of the main equation

An Explanation Based Generalization Approach to Inductive Synthesis of Functional Programs

regarding some instantiation β : X → TΣ are called unfold-
ings of an RPS relative to β . Note, that terms derived from
RPSs are partial and do not contain function variables, i.e.
all heads of the equations are eventually rewritten by Ωs.

The goal of the generalization step is to find an RPS which
explains a set of initial terms, i.e. to find an RPS such that
the initial terms are unfoldings of that RPS. We denote ini-
tial terms by t̄ and a set of initial terms by I . We liberalize
I such that it may include incomplete unfoldings. Incom-
plete unfoldings are unfoldings, where some subtrees con-
taining Ωs are replaced by Ωs.

We need to define four further concepts, namely recursion
positions which are positions in the equation bodies where
recursive calls appear, substitution terms which are the ar-
gument terms in recursive calls, unfolding positions which
are positions in unfoldings at which the heads of the equa-
tions are rewritten with their bodies, and finally parameter
instantiations in unfoldings which are subterms of unfold-
ings resulting from the initial parameter instantiation and
the substitution terms:

Definition 3 (Recursion Positions and Substitution
Terms). Let G(x1, . . . ,xα(G)) = t with parameters X =
{x1, . . . ,xα(G)} be a recursive equation. The set of recur-
sion positions of G is given by R = pos(t,G). Each recur-
sive call of G at position r ∈ R in t implies substitutions
σr : X → TΣ(X) : x j 7→ t|r j for all j ∈ [1;α(G)] for the pa-
rameters in X . We call the terms t|r j substitution terms of
G.

For equation lasts of the lasts RPS (Tab. 3) holds R = {32}
and xσ 32 = tl(x). For equation last holds R = {3} and
xσ 3 = tl(x).

Now consider an unfolding process of a recursive equation
and the positions at which rewrite steps are applied in the
intermediate terms. The first rewriting is applied at root-
position ε , since we start with the instantiated head of the
equation which is completely rewritten with the instanti-
ated body. In the instantiated body, rewrites occur at recur-
sion positions R. Assume that on recursion position r ∈ R
the instance of the head is rewritten with an instance of the
body. Then, relative to the resulting subtree at position r,
rewrites occur again at recursion positions, e.g. at position
r′ ∈ R. Relative to the entire term these latter rewrites occur
therefore at compositions of position r and recursion posi-
tions, e.g. at position rr′ and so on. We call the infinite set
of positions at which rewrites can occur in the intermediate
terms within an unfolding of a recursive equation unfolding
positions. They are determined by the recursion positions
as follows:

Definition 4 (Unfolding Positions). Let be R the recursion
positions of a recursive equation G. The set of unfolding
positions U of G is defined as the smallest set of positions

which contains the position ε and, if u ∈U and r ∈ R, the
position ur.

The unfolding positions of equation lasts of the lasts RPS
are {32,3232,323232, . . .}.

Now we look at the variable instantiations occuring during
unfolding a recursive equation. Recall the unfolding pro-
cess of the last equation (see Tab. 3) described at the end
of Sec. 2. The initial instantiation was βε = β = {x 7→
[a,b,c]}, thus in the body of the equation (replaced for the
instantiated head as result of the first rewrite step), its vari-
able is instantiated with this initial instantiation. Due to
the substitution term tl(x), the variable of the head in this
body is instantiated with β3 = σ 3 βε = {x 7→ tl([a,b,c])},
i.e. the variable in the body replaced for this instantiated
head is instantiated with σ 3 βε . A further rewriting step
implies the instantiation β33 = σ 3 σ 3 βε = σ 3 β3 = {x 7→
tl(tl([a,b,c]))} and so on. We index the instantiations oc-
curing during unfolding with the unfolding positions at
which the particular instantiated heads were placed. They
are determined by the substitutions implied by recursive
calls and an initial instantiation as follows:

Definition 5 (Instantiations in Unfoldings). Let be
G(x1, . . . ,xα(G)) = t a recursive equation with parameters
X = {x1, . . . ,xα(G)}, R and U the recursion positions and
unfolding positions of G resp., σ r the substitutions implied
by the recursive call of G at position r ∈ R, and β : X → TΣ
an initial instantiation. Then a family of instantiations in-
dexed over U is defined as βε = β and βur = σ r βu for
u ∈U,r ∈ R.

3.3. Restrictions and the Generalization Problem

An RPS which can be induced from initial terms is re-
stricted in the following way: First, it contains no mu-
tual recursive equations, second, there are no calls of re-
cursive equations within calls of recursive equations (no
nested recursive calls). The first restriction is not a seman-
tical restriction, since each mutual recursive program can
be transformed to an equivalent (regarding a particular al-
gebra) non-mutual recursive program. Yet it is a syntac-
tical restriction, since unfoldings of mutual RPSs can not
be generalized using our approach. A restriction similar to
the second one was stated by Rao (2004). He names TRSs
complying with such a restriction flat TRSs.

Inferred RPSs conform to the following syntactical charac-
teristics: First, all equations, potentially except of the main
equation, are recursive. The main equation may be recur-
sive as well, but, as only equation, it is not required to be re-
cursive. Second, inferred RPSs are minimal, in that (i) each
equation is directly or indirectly (by means of other equa-
tions) called from the main equation, and (ii) no parameter
of any equation can be omitted without changing the free

An Explanation Based Generalization Approach to Inductive Synthesis of Functional Programs

interpretation. RPSs complying with the stated restrictions
and characteristics are called minimal, non-mutual, flat re-
cursive program schemes.

There might be several RPSs which explain an initial term
t̄, but have different free interpretations. For example, Ω is
an unfolding of every RPS with a recursive main equation.
Therefore, an important question is which RPS will be in-
duced. Summers (1977) required that recurrence relations
hold at least over three succeeding traces and predicates
to justify a generalization. A similar requirement would
be that induced RPSs explain the initial terms recurrently,
meaning that I contains at least one term t̄ which can be
derived from an unfolding process, in which each recursive
equation had to be rewritten at least three times with its
body. We use a slightly different requirement: One char-
acteristic of minimal RPSs is, that if at least one substitu-
tion term is replaced by another, then the resulting RPS has
a different free interpretation. We call this characteristic
substitution uniqueness. Thus, it is sensible to require that
induced RPSs are substitution unique regarding the initial
terms, i.e. that if some substitution term is changed, then
the resulting RPS no longer explains the initial terms. It
holds, that a minimal RPS explains a set of initial trees re-
currently, if it explains it substitution uniquely.

Thus the problem of generalizing a set of initial terms I

to an RPS is to find an RPS which explains I and which
is substitution unique regarding I .

3.4. Solving the Generalization Problem

We will not state the generalization algorithm in detail
in this section but we will describe the underlying con-
cepts and the algorithm in a more informal manner. For
this section and its subsections we use the term body of
an equation for terms which are strictly speaking incom-
plete bodies: They contain only the name of the equation
instead of complete recursive calls including substitution
terms at recursion positions. For example, we refer to
the term if (empty(x), [],cons(hd(last(hd(x))), lasts)) as the
body for equation lasts of the lasts RPS (see Tab. 3). The
reason is, that we infer the complete body in two steps:
First the term which we name body in this context, second
the substitution terms for the recursive calls.

Generalization of a set of initial terms to an RPS is done in
three successive steps, namely segmentation of the terms,
construction of equation bodies and calculation of substi-
tution terms. These three generalization steps are orga-
nized in a divide-and-conquer algorithm, where backtrack-
ing can occur to the divide-phase. Segmentation consti-
tutes the divide-phase which proceeds top-down through
the initial terms. Within this phase recursion positions (see
Def. 3) and positions indicating further recursive equations
are searched for each induced equation. The latter set of

positions is called subscheme positions (see Def. 6 below).
Found recursion positions imply unfolding positions (see
Def. 4). As result of the divide-phase the initial terms are
divided into several parts by the subscheme positions, such
that—roughly speaking—each particular part is assumed to
be an unfolding of one recursive equation. Furthermore, the
particular parts are segmented by the unfolding positions,
such that—roughly speaking—each segment is assumed to
be the result of one unfolding step of the respective recur-
sive equation.

Consider the initial tree in Fig. 2, it represents the initial
term for lasts, shown in Tab. 2. The curved lines on the
path to the rightmost Ω divide the tree into three segments
which correspond to unfolding steps of the main equation,
i.e. equation lasts. The short broad lines denote three sub-
trees which are—except of their root hd—unfoldings of the
last equation. The curved lines within these subtrees divide
each subtree into segments, such that each segment corre-
spond to one unfolding step of the last equation.

When the initial trees are segmented, calculation of
equation bodies and of substitution terms follows within
the conquer-phase. These two steps proceed bottom-up
through the divided initial trees and reduce the trees dur-
ing this process. The effect is, that bodies and substitution
terms for each equation are calculated from trees which
are unfoldings of only the currently induced equation and
hence, each segment in these trees is an instantiation of the
body of the currently induced equation. E.g., for the lasts
tree shown in Fig. 2, a body and substitution terms are first
calculated from the three subtrees, i.e. for the last equa-
tion. Since there are no further recursive equations called
by the last equation—i.e. the segments of the three sub-
trees contain themselves no subtrees which are unfoldings
of further equations—each segment is an instantiation of
the body of the last equation. When this equation is com-
pletely inferred, the three subtrees are replaced by suitable
instantiations of the head of the inferred last equation. The
resulting reduced tree is an unfolding of merely one recur-
sive equation, the lasts equation. The three segments in
this reduced tree—indicated by the curved lines on the path
to the rightmost Ω—are instantiations of the body of the
searched for lasts equation. From this reduced tree, body
and substitution terms for the lasts equation are induced
and the RPS is completely induced.

Segmentations are searched for, whereas calculation of
bodies and substitution terms are algorithmic. Construction
of bodies always succeeds, whereas calculation of substitu-
tion terms—such that the inferred RPS explains the initial
terms—may fail. Thus, an inferred RPS can be seen as the
result of a search through a hypothesis space where the hy-
potheses are segmentations (divide-phase), and a construc-
tive goal test, including construction of bodies and calcu-

An Explanation Based Generalization Approach to Inductive Synthesis of Functional Programs

hd

x

tl

tl

tl

x

tl

x

tl

hd

x

tl

hd

x

tl

x

hd

x

tl

x

hd

x

tl

x

tl

[]

[]empty

tl

x

hd

tl

empty

tl

empty

x

tl

tl

tl tl

empty

tl

hd

x

[]empty

[]empty

empty

x

empty

tl

hd

tl

empty

tl

hd

tl

hd

tl

cons

hd

if

if

Omega

Omega

if

if

cons

if

cons

if

if

Omega

hd

if

Omega

hd

if

Figure 2. Initial Tree for lasts

lation of substitution terms (conquer-phase), which tests,
whether the completely inferred RPS explains the initial
terms (and is substitution unique regarding them). In the
following we describe each step in more detail:

3.4.1. SEGMENTATION

When induction of an RPS from a set of initial trees I

starts, the hypothesis is, that there exists an RPS with a re-
cursive main equation which explains I . First, recursion
and subscheme positions for the hypothetical main equa-
tion Gm are searched for.

Definition 6 (Subscheme Positions). Subscheme posi-
tions are all smallest positions in the body of a recursive
equation G which denote subterms, in which calls of fur-
ther recursive equations from the RPS appear, but no re-
cursive call of equation G.

E.g., the only subscheme position of equation lasts of the
lasts RPS (Tab. 3) is u = 31. A priori, only particular posi-
tions from the initial trees come into question as recursion
and subscheme positions, namely those which belong to a
path leading from the root to an Ω. The reason is, that
eventually each head of a recursive equation at any unfold-
ing position in an intermediate term while unfolding this
equation is rewritten with an Ω:

Lemma 1 (Recursion and Subscheme Positions imply
Ωs). Let t̄ ∈ TΣ,Ω be an (incomplete) unfolding of an RPS
S = (G ,m) with a recursive main equation Gm. Let R, U
and S be the sets of recursion, unfolding and subscheme
positions of Gm respectively. Then for all u ∈ U ∩ pos(t̄)
holds:

1. pos(t̄|u,Ω) 6= /0

2. ∀s ∈ S : if us ∈ pos(t̄) then pos(t̄|us,Ω) 6= /0

It is not very difficult to see that this lemma holds. For
a lack of space we do not give the proof here. It can be
found in (Kitzelmann, 2003) where Lem. 1 and Lem. 2 are
proven as one lemma. Knowing Lem. 1, before search
starts, the initial trees can be reduced to their skeletons
which are terms resulting from replacing subtrees without
Ωs with variables.

Definition 7 (Skeleton). The skeleton of a term t ∈
TΣ,Ω(X), written skeleton(t) is the minimal pattern of t for
which holds pos(t,Ω) = pos(skeleton(t),Ω).

For example, consider the subtree indicated by the leftmost
short broad line of the tree in Fig. 2. Omitting the root
hd, it is an unfolding of the last equation of the lasts RPS
shown in Tab. 3. Its skeleton is the substantially reduced
term if (x1,x2, if (x3,x4, if (x5,x6,Ω))). Search for recursion
and subscheme positions is done on the skeletons of the
original initial trees. Thereby the hypothesis space is sub-
stantially narrowed without restricting the hypothesis lan-
guage, since only those hypotheses are ruled out which are
a priori known to fail the goal test.

Ωs are not only implied by recursion and subscheme posi-
tions, but also imply Ωs recursion and subscheme positions
since Ωs in unfoldings result only from rewriting an instan-
tiated head of a recursive equation in a term with an Ω:

Lemma 2 (Ωs imply recursion and subscheme posi-
tions). Let t̄ ∈ TΣ,Ω be an (incomplete) unfolding of an RPS
S = (G ,m) with a recursive main equation Gm. Let R, U

An Explanation Based Generalization Approach to Inductive Synthesis of Functional Programs

and S be the sets of recursion, unfolding and subscheme po-
sitions of Gm respectively. Then for all v ∈ pos(t̄,Ω) hold

• It exists an u ∈U ∩pos(t̄),r ∈ R with u≤ v < ur or

• it exists an u ∈U ∩pos(t̄),s ∈ S with us≤ v.

Proof: in (Kitzelmann, 2003).

From the definition of subscheme positions and the pre-
vious lemma follows, that subscheme positions are deter-
mined, if a set of recursion positions has been fixed. Lem. 1
restricts the set of positions which come into question as
recursion and subscheme positions. Lem. 2 together with
characteristics from subscheme positions suggests to or-
ganize the search as a search for recursion positions with
a depending parallel calculation of subscheme positions.
When hypothetical recursion, unfolding, and subscheme
positions are determined they are checked regarding the la-
bels in the initial trees on pathes leading to Ωs. The nodes
between one unfolding position and its successors in un-
foldings result from the same body (with different instanti-
ations). Since variable instantiations only occur in subtrees
at positions not belonging to pathes leading to Ωs, for each
unfolding position the nodes between it and its successors
are necessarily equal:

Lemma 3 (Valid Segmentation). Let t̄ ∈ TΣ,Ω be an un-
folding of an RPS S = (G ,m) with a recursive main
equation Gm. Then it exists a term ťG ∈ TΣ,Ω(X) with
pos(ťG,Ω) = R∪ S such that for all u ∈ U ∩ pos(t̄) hold:
ťG ≤Ω t̄|u where ≤Ω is defined as (a) Ω≤Ω t if pos(t,Ω) 6=
/0, (b) x ≤Ω t if x ∈ X and pos(t,Ω) = /0, and (c)
f (t1, . . . , tn)≤Ω f (t ′1, . . . , t

′
n) if ti ≤Ω t ′i for all i ∈ [1;n].

Proof: in (Kitzelmann, 2003).

This lemma has to be slightly extended, if one allows for
initial trees which are incomplete unfoldings. Lem. 3 states
the requirements to assumed recursion and subscheme po-
sitions which can be assured at segmentation time. They
are necessary for an RPS which explains the initial terms,
yet not sufficient to assure, that an RPS complying with
them exists which explains the initial trees. That is, later a
backtrack can occur to search for other sets of recursion and
subscheme positions. If found recursion and subscheme
positions R and S comply with the stated requirements, we
call the pair (R, S) a valid segmentation.

In our implemented system the search for recursion posi-
tions is organized as a greedy search through the space of
sets of positions in the skeletons of the initial trees. When
a valid segmentation has been found, compositions of un-
folding and subscheme positions denote subtrees in the
initial trees assumed to be unfoldings of further recursive
equations. Segmentation proceeds recursively on each set

of (sub)trees denoted by compositions of unfolding posi-
tions and one subscheme position s ∈ S. We denote such a
set of initial (sub)trees Is.

3.4.2. CONSTRUCTION OF EQUATION BODIES

Construction of each equation body starts with a set of ini-
tial trees I for which at segmentation time a valid segmen-
tation (R, S) has been found, and an already inferred RPS
for each subscheme position s ∈ S which explains the sub-
trees Is. These subtrees of the trees in I are replaced by
the suitably instantiated heads or respectively bodies of the
main equations of the already inferred RPSs. For example,
consider the initial tree for lasts shown in Fig. 2. When cal-
culation of a body for the main equation lasts starts from
this tree, an RPS containing only the last equation which
explains all three subtrees indicated by the short broad lines
has already been inferred. The initial tree is reduced by
replacing these three subtrees by suitable instantiations of
the head of the last equation. We denote the set of reduced
initial trees also with I and its elements also with t̄. By re-
ducing the initial trees based on already inferred recursive
equations, the problem of inducing a set of recursive equa-
tions is reduced to the problem of inducing merely one re-
cursive equation (where the recursion positions are already
known from segmentation).

An equation body is induced from the segments of an initial
tree which is assumed to be an unfolding of one recursive
equation.

Definition 8 (Segments). Let be t̄ an initial tree, R a set of
(hypothetical) recursion positions and U the corresponding
set of unfolding positions. The set of complete segments of
t̄ is defined as: {t̄|u[R← G] | u ∈U ∩pos(t̄),R⊂ t̄|u}

For example, consider the subtree indicated by the leftmost
short broad line of the initial tree in Fig. 2 without its root
hd. It is an unfolding of the last equation as stated in Tab. 3.
When the only recursion position 3 has been found it can be
splitted into three segments, indicated by the curved lines:

1. if(empty(tl(hd(x))),hd(x),G)

2. if(empty(tl(tl(hd(x)))), tl(hd(x)),G)

3. if(empty(tl(tl(tl(hd(x))))), tl(tl(hd(x))),G)

Expressed according to segments, the fact of a repetitive
pattern between unfolding positions (see Lem. 3) becomes
the fact, that the sequences of nodes between the root and
each G are equal for each segment. Each segment is an in-
stantiation of the body of the currently induced equation.
In general, the body of an equation contains other nodes
among those between its root and the recursive calls. These
further nodes are also equal in each segment. Differences
in segments of unfoldings of a recursive equation can only

An Explanation Based Generalization Approach to Inductive Synthesis of Functional Programs

result from different instantiations of the variables of the
body. Thus, for inducing the body of an equation from seg-
ments, we assume each position in the segments which is
equally labeled in all segments as belonging to the body of
the assumed equation, but each position which is variably
labeled in at least two segments as belonging to the instan-
tiation of a variable. This assumption can be seen as an in-
ductive bias since it might occur, that also positions which
are equal over all segments belong to a variable instanti-
ation. Nevertheless it holds, that if an RPS exists which
explains a set of initial trees, then it also exists an RPS
which explains the initial trees and is constructed based on
the stated assumption. Based on the stated assumption, the
body of the equation to be induced is determined by the
segments and defined as follows:

Definition 9 (Valid Body). Given a set of reduced initial
trees, the most specific maximal pattern of all segments of
all the trees is called valid body and denoted t̂G.

The maximal pattern of a set of terms can be calculated by
first order anti-unification (Plotkin, 1969).

Calculating a valid body regarding the three segments enu-
merated above results in the term if (empty(tl(x)),x,G).
The different subterms of the segments are assumed to
be instantiations of the parameters in the calculated valid
body. Since each segment corresponds to one unique un-
folding position, instantiations of parameters in unfoldings
as defined in Def. 5 are now given. E.g., from the three
segments enumerated above we obtain:

1. βε(x) = hd(x)

2. β3(x) = tl(hd(x))

3. β33(x) = tl(tl(hd(x)))

3.4.3. INDUCING SUBSTITUTION TERMS

Induction of substitution terms for a recursive equation
starts on a set of reduced initial trees which are assumed
to be unfoldings of one recursive equation, an already in-
ferred (incomplete) equation body which contains only a
G at recursion positions, and variable instantiations in un-
foldings according to Def. 5. The goal is to complete each
occurence of G to a recursive call including substitution
terms for the parameters of the recursive equation.

The following lemma follows from Def. 5 and states char-
acteristics of parameter instantiations in unfoldings more
detailed. It characterizes the instantiations in unfoldings
against the substitution terms of a recursive equation con-
sidering each single position in them.

Lemma 4 (Instantiations in Unfoldings). Let be
G(x1, . . . ,xα(G)) = t a recursive equation with parameters
X = {x1, . . . ,xα(G)}, recursion positions R and unfolding

positions U, β : X → TΣ an instantiation, σ r substitution
terms for each r ∈ R and βu instantiations as defined in
Def. 5 for each u ∈ U. Then for all i, j ∈ [1;α(G)] and
positions v hold:

1. If (xi σ r)|v = x j then for all u ∈U hold (xiβur)|v = x jβu.

2. If (xi σ r)|v = f ((xi σ r)|v1, . . . ,(xi σ r)|vn), f ∈ Σ,α(f) = n
then for all u ∈U hold node(xiβur,v) = f .

We can read the implications stated in the lemma in the
inverted direction and thus we get almost immediately an
algorithm to calculate the substitution terms of the searched
for equation from the known instantiations in unfoldings.

One interesting case is the following: Suppose a recursive
equation, in which at least one of its parameters only occurs
within a recursive call in its body, for example the equa-
tion G(x,y,z) = if (zerop(x),y,+(x,G(prev(x),z,succ(y))))
in which this is the case for parameter z1. For such a vari-
able no instantiations in unfoldings are given when induc-
tion of substitution terms starts. Also such variables are
not contained in the (incomplete) valid equation body. Our
generalizer introduces them each time, when none of the
both implications of Lem. 4 hold. Then it is assumed,
that the currently induced substitution term contains such
a “hidden” variable at the current position. Based on this
assumption the instantiations in unfoldings of the hidden
variable can be calculated and the inference of subtitution
terms for it proceeds as described for the other parameters.

When substitution terms have been found, it has to be
checked, whether they are substitution unique with regard
to the reduced initial terms. This can be done for each sub-
stitution term that was found separately.

3.4.4. INDUCING AN RPS

We have to consider two further points: The first point is
that segmentation presupposes the initial trees to be ex-
plainable by an RPS with a recursive main equation. Yet
in Sec. 3.3 we characterized the inferable RPSs as liberal
in this point, i.e. that also RPSs with a non-recursive main
equation are inferable. In such a case, the initial trees con-
tain a constant (not repetitive) part at the root such that no
recursion positions can be found for these trees (as for ex-
ample the three subtrees indicated by the short broad lines
in Fig. 2 which contain the constant root hd). In this case,
the root node of the trees is assumed to belong to the body
of a non-recursive main equation and induction of RPSs
recursively proceeds at each subtree of the root nodes.

The second point is that RPSs explaining the subtrees
which are assumed to be unfoldings of further recursive
equations at segmentation time are already inferred. Based

1A practical example is the Tower of Hanoi problem

An Explanation Based Generalization Approach to Inductive Synthesis of Functional Programs

on these already inferred RPSs, the initial trees are reduced
and then a body and substitution terms are induced. Cal-
culation of a body always succeeds, whereas calculation
of substitution terms may fail. One important question is,
whether success of calculating substitution terms depends
on the already inferred RPSs. Is the (problematic) case
possible, that two different sets of RPSs both explain the
subtrees which will be replaced, such that calculation of
substitution terms from the reduced initial trees succeeds
presupposed one particular set of RPSs, but fails for the
other set? Fortunately we could prove, that this is not pos-
sible. If a set of RPSs explaining the subtrees exists such
that substitution terms can be calculated, then substitution
terms can be calculated pressuposed any set of RPSs ex-
plaining the subtrees. Thus, inducing RPSs for the subtrees
can be dealt with as an independent problem as it is done
in our divide-and-conquer approach.

4. Generating an Initial Term

Our theory and prototypical implementation for the first
synthesis step uses the datatype List, defined as follows:
The empty list [] is an (α-)list and if a is in element of type
α and l is an α-list, then cons(a, l) is an α-list. Lists may
contain lists, i.e. α may be of type List α ′.

4.1. Characterization of the Approach

The constructed initial terms are composed from the list
constructor functions [],cons, the functions for decompos-
ing lists hd, tl, the predicate empty testing for the empty list,
one variable x, the 3ary (non-strict) conditional function if
as control structure, and the bottom constant Ω meaning
undefined. Similar to Summers (1977), the set of functions
used in our term construction approach implies the restric-
tion of induced programs to solve structural list programs.
An extension to Summers is that we allow the example in-
puts to be partially ordered instead of only totally ordered.
This is related to the extension of inducing sets of recur-
sive equations as described in Sec. 3 instead of only one
recursive equation.

We say that an initial term explains I/O-examples, if it eval-
uates to the specified output when applied to the respective
input or to undefined. The goal of the first synthesis step
is to construct an initial term which explains a set of I/O-
examples and which can be explained by an RPS.

4.2. Basic Concepts

Definition 10 (Subexpressions). The set of subexpres-
sions of a list l is defined to be the smallest set which in-
cludes l itself and, if l has the form cons(a, l ′), all subex-
pressions of a and of l′. If a is an atom, then a itself is its
only subexpression.

Since hd and tl—which are defined by hd(cons(a, l)) =
a and tl(cons(a, l)) = l—decompose lists uniquely, each
subexpression can be associated with the unique term
which computes the subexpression from the original list.
E.g., consider the following I/O-pair which is the third one
from Tab. 1: [[a,b]] 7→ [b]. The set of all subexpressions
of the input list [[a,b]] together with their associated terms
is: {x = [[a,b]], hd(x) = [a,b], tl(x) = [], hd(hd(x)) =
a, tl(hd(x)) = [b], hd(tl(hd(x))) = b, tl(tl(hd(x))) = []}.

Since lists are uniquely constructed by the constructor
functions [] and cons, traces which compute the specified
output can uniquely be constructed from the terms for the
subexpressions of the respective input:

Definition 11 (Construction of Traces). Let i 7→ o be an
I/O-pair (i is a list). If o is a subexpression of i, then the
trace is defined to be the term associated with o. Otherwise
o has the form cons(a, l). Let t and t ′ be the traces for the
I/O-pairs i 7→ a and i 7→ l respectively. The the trace for
i 7→ o is defined to be the term cons(t, t ′).

E.g., the trace for computing the output [b] from its input
[[a,b]] is the term cons(hd(tl(hd(x))), []).

Similar to Summers, we discriminate the inputs with re-
spect to their structure, more precisely wrt a partial order
over them implied by their structural complexity. As stated
above, we allow for arbitrarily nested lists as inputs. A par-
tial order over such lists is given by: []≤ l for all lists l and
cons(a, l)≤ cons(a′, l′), iff l ≤ l′ and, if a and a′ are again
lists, a≤ a′.

Consider any unfolding of an RPS. Generally it holds, that
greater positions on a path leading to an Ω result from more
rewritings of a head of a recursive equation with its body
compared to some smaller position. In other words, the
computation represented by a node at a greater position is
one on a deeper recursion level than a computation repre-
sented by a smaller position. Since we use only the com-
plexity of an input list as criterion whether the recursion
stops or whether another call appears with the input de-
composed in some way, deeper recursions result from more
complex inputs in the induced programs.

4.3. Solving the Term Construction Problem

The overall concept of constructing the initial tree is to in-
troduce the nodes from the traces position by position to
the initial tree as long as the traces are equal and to in-
troduce an if -expression as soon as at least two (sub)traces
differ. The predicate in the if -expression divides the in-
puts into two sets. The “then”-subtree is recursively con-
structed from the input/trace-pairs whose inputs evaluate
to true with the predicate and the “else”-subtree is recur-
sively constructed from the other input/trace-pairs. Even-
tually only one single input/trace-pair remains when an if -

An Explanation Based Generalization Approach to Inductive Synthesis of Functional Programs

expression is introduced. In this case an Ω indicating a re-
cursive call on this path is introduced as leaf at the current
position in the initial term and (this subtree of) the initial
tree is finished. The reason for introducing an Ω in this case
is, that we assume, that if the input/trace-set would contain
a pair with a more complex input, than the respective trace
would at some position differ from the remaining trace and
thus it would imply an if -expression, i.e. a recursive call
at some deeper position. Since we do not know the posi-
tion at which this difference would occur, we can not use
this single trace, but have to indicate a recursive call on this
path by an Ω. Thus, for principal reasons, the constructed
initial terms are undefined for the most complex inputs of
the example set.

We now consider the both cases that all roots of the traces
are equal and that they differ respectively more detailed.

4.3.1. EQUAL ROOTS

Suppose all generated traces have the same root symbol. In
this case, this symbol constitutes the root of the initial tree.
Subsequently the sub(initial)trees are calculated through a
recursive call to the algorithm. Suppose the initial tree has
to explain the I/O-examples {[a] 7→ a, [a,b] 7→ b, [a,b,c] 7→
c}. Calculating the traces and replacing them for the
outputs yields the input/trace-set {[a] 7→ hd(x), [a,b] 7→
hd(tl(x)), [a,b,c] 7→ hd(tl(tl(x)))}. All three traces have
the same root hd, thus we construct the root of the initial
tree with this symbol. The algorithm for constructing the
initial subterm of the constructed root hd now starts recu-
sively on the set of input/trace-pairs where the traces are
the subterms of the roots hd from the three original traces,
i.e. on the set {[a] 7→ x, [a,b] 7→ tl(x), [a,b,c] 7→ tl(tl(x))}.

The traces from these new input/trace-set have different
roots, that is, an if -expression is introduced as subtree of
the constructed initial tree.

4.3.2. INTRODUCING CONTROL STRUCTURE

Suppose the traces (at least two of them) have different
roots, as for example the traces of the second input/trace-
set in the previous subsection. That means that the initial
term has to apply different computations to the inputs cor-
responding to the different traces. This is done by intro-
ducing the conditional function if , i.e. the root of the ini-
tial term becomes the function symbol if and contains from
left to right three subtrees: First, a predicate term with the
predicate empty as root to distinguish between the inputs
which have to be computed differently wrt their complex-
ity; second, a tree explaining all I/O-pairs whose inputs are
evaluated to true from the predicate term; third, a tree ex-
plaining the remaining I/O-examples. It is presupposed,
that all traces corresponding to inputs evaluating to true
with the predicate are equal. These equal subtraces be-

come the second subtree of the if -expression, i.e. they are
evaluated, if an input evaluates to true with the predicate.
That means that never an Ω occurs in a “then”-subtree of
a constructed initial tree, i.e. that recursive calls in the in-
duced RPSs may only occur in the “else”-subtrees. For the
“else”-subtree the algorithm is recursively processed on all
remaining input/trace-pairs.

5. Experimental Results

We have implemented prototypes (without any thoughts
about efficiency) for both described steps, construction of
the initial tree and generalization to an RPS. The imple-
mentations are in Common-Lisp. In Tab. 4 we have listed
experimental results for a few sample problems. The first
column lists the names for the induced functions, the sec-
ond column lists the number of given I/O-pairs, the third
column lists the number of induced equations, and the
fourth column lists the times consumed by the first step,
the second step, and the total time respectively. The exper-
iments were performed on a Pentium 4 with Linux and the
program runs are interpreted with the clisp interpreter.

Table 4. Some inferred functions
function #expl #eqs times in sec
last 4 2 .003 / .001 / .004
init 4 1 .004 / .002 / .006
evenpos 7 2 .01 / .004 / .014
switch 6 1 .012 / .004 / .016
unpack 4 1 .003 / .002 / .005
lasts 10 2 .032 / .032 / .064
mult-lasts 11 3 .04 / .49 / .53
reverse 6 4 .031 / .036 / .067

All induced programs compute the intended function. The
number of given examples is in each case the minimal one.
When given one example less, the system does not produce
an unintended program, but produces no program. Indeed,
an initial term is produced in such a case which is correct on
the example set, but no RPS is generalized, because it exists
no RPS which explains the initial term and is substitution
unique wrt it (see Sec. 3.3).

last computes the last element of a list. The main equa-
tion is not recursive and only applies a hd to the result of
the induced recursive equation which computes a one ele-
ment list containing the last element of the input list. init
returns the input list without the last element. evenpos com-
putes a list containing each second element of the input list.
The main equation is not recursive and only deals with the
empty input list as special case. switch returns a list, in
which each two successive elements of the input list are on
switched positions, e.g., switch([a,b,c,d,e]) = [b,a,d,c,e].
unpack produces an output list, in which each element

An Explanation Based Generalization Approach to Inductive Synthesis of Functional Programs

from the input list is encapsulated in a one element list,
e.g., unpack([a,b,c]) = [[a], [b], [c]]. unpack is the clas-
sical example in (Summers, 1977). lasts is the program
described in Sec. 2. The given I/O-examples are those
from Tab. 1. mult-lasts takes a list of lists as input just
like lasts. It returns a list of the same structure as the input
list where each inner list contains repeatedly the last ele-
ment of the corresponding inner list from the input. For ex-
ample, mult-lasts([[a,b], [c,d,e], [f]]) = [[b,b], [e,e,e], [f]].
All three induced equations are recursive. The third equa-
tion computes a one element list containing the last element
of an input list. The second equation utilizes the third equa-
tion and returns a list of the same structure as a given input
list where the elements of the input list are replaced by the
last element. The first equation utilizes the second equation
to compute the inner lists. Finally reverse reverses a list.
The induced program has an unusual form, nevertheless it
is correct.

6. Conclusion and Further Research

We presented an EBG approach to inducing sets of re-
cursive equations representing functional programs from
I/O-examples. The underlying methodologies are inspired
by classical approaches to induction of functional Lisp-
programs, particularly by the approach of Summers (1977).
The presented approach goes in three main aspects beyond
Summers’ approach: Sets of recursive equations can be in-
duced at once instead of only one recursive equation, each
equation may contain more than one recursive call, and ad-
ditionally needed parameters are introduced systematically.
We have implemented prototypes for both steps. The gen-
eralizer works domain-independent and all problems which
comply to our general program scheme (Def. 1) with the
restrictions described in Sec. 3.3 can be solved, whereas
construction of initial terms as described in Sec. 4 relies on
knowledge of datatypes.

We are investigating several extensions for the first synthe-
sis step: First, we try to integrate knowledge about further
datatypes such as trees and natural numbers. For example,
we believe, that if we introduce zero and succ, denoting
the natural number 0 and the successor function resp. as
constructors for natural numbers, prev for “decomposing”
natural numbers and the predicate zerop as bottom test on
natural numbers, then it should be possible to induce a pro-
gram returning the length of a list for example. Another
extension will be to allow for more than one input parame-
ter in the I/O-examples, such that append becomes induca-
ble for example. A third extension should be the ability to
utilize user-defined or in a previous step induced functions
within an induction step.

Until now our approach suffers from the restriction to struc-
tural problems due to the principal approach to calculate

traces deterministically without search in the first synthe-
sis step. We work on overcoming this restriction, i.e. on
extending the first synthesis step to the ability of dealing
with problems which are not (only) structural, list sorting
for example. A strong extension to the second step would
be the ability to deal with nested recursive calls, yet this
would imply a much more complex structural analysis on
the initial terms.

References
Biermann, A. W., Guiho, G., & Kodratoff, Y. (Eds.). (1984). Au-

tomatic program construction techniques. Collier Macmillan.

Dershowitz, N., & Jouanaud, J.-P. (1990). Rewrite systems. In
J. Leeuwen (Ed.), Handbook of theoretical computer science,
vol. B. Elsevier.

Flener, P., & Partridge, D. (2001). Inductive programming. Au-
tom. Softw. Eng., 8, 131–137.

Flener, P., & Yilmaz, S. (1999). Inductive synthesis of recursive
logic programs: Achievements and prospects. Journal of Logic
Programming, 41, 141–195.

Kitzelmann, E. (2003). Inductive functional program synthesis – a
term-construction and folding approach. Master’s thesis, Dept.
of Computer Science, TU Berlin. http://www.cogsys.wiai.uni-
bamberg.de/kitzelmann/documents/thesis.ps.

Lowry, M. L., & McCarthy, R. D. (1991). Autmatic software de-
sign. Cambridge, Mass.: MIT Press.

Muggleton, S., & De Raedt, L. (1994). Inductive logic program-
ming: Theory and methods. Journal of Logic Programming,
Special Issue on 10 Years of Logic Programming, 19-20, 629–
679.

Olsson, R. (1995). Inductive functional programming using in-
cremental program transformation. Artificial Intelligence, 74,
55–8.

Plotkin, G. D. (1969). A note on inductive generalization. In
Machine intelligence, vol. 5, 153–163. Edinburgh University
Press.

Rao, M. R. K. K. (2004). Inductive inference of term rewriting
systems from positive data. ALT (pp. 69–82).

Schmid, U., & Wysotzki, F. (2000). Applying inductive pro-
gramm synthesis to macro learning. Proc. 5th International
Conference on Artificial Intelligence Planning and Scheduling
(AIPS 2000) (pp. 371–378). AAAI Press.

Summers, P. D. (1977). A methodology for LISP program con-
struction from examples. Journal ACM, 24, 162–175.

Wysotzki, F., & Schmid, U. (2001). Synthesis of recursive pro-
grams from finite examples by detection of macro-functions
(Technical Report 01-2). Dept. of Computer Science, TU
Berlin, Germany.

