
Noname manuscript No.
(will be inserted by the editor)

Code as Data – Creating Programs Which Create Programs
With Maude

Emanuel Kitzelmann

This is an author-created version of the published article. The final publication will be available at www.springerlink.com.

Before I started to implement my inductive pro-

gramming algorithm Igor 2 [2], which I had developed

as part of my doctoral research, I had used Lisp to im-

plement inductive programming (IP) systems. Lisp was

a reasonable choice since IP is all about dealing with

code as data. In particular, IP is concerned with syn-

thesizing programs from incomplete specifications such

as input/output examples or computation traces. So

why did I choose the term-rewriting based language

Maude [1] to implement Igor 2?

Igor 2 synthesizes recursive constructor (term rewrit-

ing) systems (CSs) from non-recursive CSs that specify

the desired functions on parts of their domains. In the

simplest case, the specifying CS consists of a number of

ground rules and denotes a set of I/O examples. CSs can

be seen as first-order functional programs: They consist
of equations over algebraic types which are interpreted

as reduction rules and may contain constructors in their

heads (pattern matching). Fig. 1 shows an example of

a specification and the synthesized function.

I had two (plus one) reasons for choosing Maude.

First, Maude’s so-called functional modules, a certain

subset of the language, are an extended form of CSs.

Hence Igor 2’s objects – specifications and generated

programs – are valid Maude programs and I didn’t

need to care about implementing my own object lan-

guage. Second, Maude has powerful reflection capabili-

ties that facilitate parsing, manipulation and evaluation

of Maude code from within Maude programs, just

like quoted expressions in Lisp can represent code, can

The author is funded within the DAAD FIT-programme.

Emanuel Kitzelmann
International Computer Science Institute, Berkeley, USA
E-mail: emanuel@icsi.berkeley.edu

sort NList . ∗∗∗sort/type for lists of natural numbers
op nil : → NList [ctor] . ∗∗∗empty list
op : : Nat NList → NList [ctor] . ∗∗∗cons
vars x, y, z : Nat . var xs : NList . ∗∗∗ variables

op last : NList → Nat . ∗∗∗signature for last

∗∗∗ specification
eq last (x: nil) = x .
eq last (x:y: nil) = y .
eq last (x:y:z : nil) = z .

∗∗∗synthesized solution
eq last (x: nil) = x .
eq last (x:y:xs) = last (y:xs) .

Fig. 1 Example last : Type and specification (input to
Igor 2) and induced solution (Igor 2 output) in Maude syn-
tax.

be manipulated by list functions and evaluated. (And

third: I felt like trying something new.)

Reflection means that for all constructs of Maude

programs (signatures, terms, equations, complete mod-

ules) data structures to represent and manipulate them

are implemented in Maude’s standard library. Meta-

represented terms, equations, modules etc. are terms of

types Term, Equation, Module etc. and can be rewritten

by a Maude program just like any other term. For ex-

ample, consider a Maude module, let’s say a module M

that contains the two equations of the synthesized solu-

tion from Fig. 1. Applying upEqs(’M, false) would then

yield

eq ’ last [’ : [’x:Nat,’ nil . NatList]] = ’x:Nat [none] .
eq ’ last [’ : [’x:Nat,’ : [’y:Nat,’xs :NatList]]] =

’ last [’ : [’y:Nat,’xs :NatList]] [none] .

which is a term of type EquationSet. Also rewriting and

related concepts like matching and substitutions are im-

plemented at the meta-level. For example,

metaMatch(upModule(’M,false), ’ : [’x:Nat,’xs :NatList] ,
’ : [’1. Nat, ’ : [’2. Nat,’ nil . NatList]] , nil , 0)

http://www.springerlink.com

2 Emanuel Kitzelmann

returns the term (of type Substitution):

’x:Nat← ’1. Nat , ’xs :NatList← ’ : [’2. Nat,’ nil . NatList] .

Two further features that distinguish Maude from

other (functional) programming languages are subtypes

and operator properties like associativity, commutativ-

ity etc. which (together with pattern matching) permit

succinct definitions of data structures. Figure 2 shows

examples for lists and sets.

sort NatC . ∗∗∗a sort for Nat collections
subsort Nat < NatC . ∗∗∗a Nat is a Nat collection , size 1
op none : → NatC [ctor] . ∗∗∗the empty collection
∗∗∗we define a constructor , to build collections from
∗∗∗ existing ones and make it associative and having none
∗∗∗as id element; the collection now corresponds to a list
op , : NatC NatC → NatC [ctor assoc id : none] .
var x : Nat . var xs : NatC . ∗∗∗ variables
∗∗∗now getting the last element from a list is just
∗∗∗pattern matching (like getting its first element)
op last : NatC → Nat . eq last ((xs ,x)) = x .
reduce last ((1,2,3)) . Result : 3 ∗∗∗a quick test
∗∗∗ let ’ s make the collection a set by adding commutativity
∗∗∗and eliminating multiple instances of the same element
op , : NatC NatC → NatC [ctor assoc comm id: none] .
eq ((x , x)) = x .
reduce (1,2,3,2) . Result : (1,2,3)
∗∗∗every element can be the first one due to commutativity
op member : Nat NatC → Bool .
eq member (x, (x , xs)) = true .
eq member (x, xs) = false [owise] .
reduce member(3, (1,2,3,4)) . Result : true .

Fig. 2 Succinctly defining data structures in Maude.

I covered some features that let me chose Maude for

implementing Igor 2, but Maude has much more to of-

fer. Types can be parameterized and besides functional

modules there are so-called system modules, that let you

specify and implement concurrent and non-deterministic

systems, and even object-oriented modules. Maude is

a logical framework in which more specific languages

can be modeled. It is a strictly declarative language

and includes a model checker such that properties of a

Maude program/theory can automatically be checked.

The weak points of Maude are a rather small library

with only few predefined data structures and the lack

of suitable input/output handling.

References

1. Clavel, M., Durán, F., Eker, S., Lincoln, P., Mart́ı-Oliet,
N., Meseguer, J., Talcott, C.: All About Maude - A High-
Performance Logical Framework. Springer-Verlag (2007)

2. Kitzelmann, E.: A combined analytical and search-based
approach for the inductive synthesis of functional pro-
grams. Künstliche Intelligenz 25(2), 179–182 (2011)

