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Before I started to implement my inductive pro-

gramming algorithm Igor 2 [2], which I had developed

as part of my doctoral research, I had used Lisp to im-

plement inductive programming (IP) systems. Lisp was

a reasonable choice since IP is all about dealing with

code as data. In particular, IP is concerned with syn-

thesizing programs from incomplete specifications such

as input/output examples or computation traces. So

why did I choose the term-rewriting based language

Maude [1] to implement Igor 2?

Igor 2 synthesizes recursive constructor (term rewrit-

ing) systems (CSs) from non-recursive CSs that specify

the desired functions on parts of their domains. In the

simplest case, the specifying CS consists of a number of

ground rules and denotes a set of I/O examples. CSs can

be seen as first-order functional programs: They consist
of equations over algebraic types which are interpreted

as reduction rules and may contain constructors in their

heads (pattern matching). Fig. 1 shows an example of

a specification and the synthesized function.

I had two (plus one) reasons for choosing Maude.

First, Maude’s so-called functional modules, a certain

subset of the language, are an extended form of CSs.

Hence Igor 2’s objects – specifications and generated

programs – are valid Maude programs and I didn’t

need to care about implementing my own object lan-

guage. Second, Maude has powerful reflection capabili-

ties that facilitate parsing, manipulation and evaluation

of Maude code from within Maude programs, just

like quoted expressions in Lisp can represent code, can
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sort NList . ∗∗∗sort/type for lists of natural numbers
op nil : → NList [ ctor ] . ∗∗∗empty list
op : : Nat NList → NList [ ctor ] . ∗∗∗cons
vars x, y, z : Nat . var xs : NList . ∗∗∗ variables

op last : NList → Nat . ∗∗∗signature for last

∗∗∗ specification
eq last (x: nil ) = x .
eq last (x:y: nil ) = y .
eq last (x:y:z : nil ) = z .

∗∗∗synthesized solution
eq last (x: nil ) = x .
eq last (x:y:xs) = last (y:xs) .

Fig. 1 Example last : Type and specification (input to
Igor 2) and induced solution (Igor 2 output) in Maude syn-
tax.

be manipulated by list functions and evaluated. (And

third: I felt like trying something new.)

Reflection means that for all constructs of Maude

programs (signatures, terms, equations, complete mod-

ules) data structures to represent and manipulate them

are implemented in Maude’s standard library. Meta-

represented terms, equations, modules etc. are terms of

types Term, Equation, Module etc. and can be rewritten

by a Maude program just like any other term. For ex-

ample, consider a Maude module, let’s say a module M

that contains the two equations of the synthesized solu-

tion from Fig. 1. Applying upEqs(’M, false ) would then

yield

eq ’ last [ ’ : [ ’x:Nat,’ nil . NatList ] ] = ’x:Nat [none] .
eq ’ last [ ’ : [ ’x:Nat,’ : [ ’y:Nat,’xs :NatList ] ] ] =

’ last [ ’ : [ ’y:Nat,’xs :NatList ] ] [none] .

which is a term of type EquationSet. Also rewriting and

related concepts like matching and substitutions are im-

plemented at the meta-level. For example,

metaMatch(upModule(’M,false), ’ : [ ’x:Nat,’xs :NatList ] ,
’ : [ ’1. Nat, ’ : [ ’2. Nat,’ nil . NatList ] ] , nil , 0)
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returns the term (of type Substitution ):

’x:Nat← ’1. Nat , ’xs :NatList← ’ : [ ’2. Nat,’ nil . NatList ] .

Two further features that distinguish Maude from

other (functional) programming languages are subtypes

and operator properties like associativity, commutativ-

ity etc. which (together with pattern matching) permit

succinct definitions of data structures. Figure 2 shows

examples for lists and sets.

sort NatC . ∗∗∗a sort for Nat collections
subsort Nat < NatC . ∗∗∗a Nat is a Nat collection , size 1
op none : → NatC [ctor ] . ∗∗∗the empty collection
∗∗∗we define a constructor , to build collections from
∗∗∗ existing ones and make it associative and having none
∗∗∗as id element; the collection now corresponds to a list
op , : NatC NatC → NatC [ctor assoc id : none] .
var x : Nat . var xs : NatC . ∗∗∗ variables
∗∗∗now getting the last element from a list is just
∗∗∗pattern matching ( like getting its first element)
op last : NatC → Nat . eq last ((xs ,x)) = x .
reduce last ((1,2,3 )) . Result : 3 ∗∗∗a quick test
∗∗∗ let ’ s make the collection a set by adding commutativity
∗∗∗and eliminating multiple instances of the same element
op , : NatC NatC → NatC [ctor assoc comm id: none] .
eq ((x , x)) = x .
reduce ( 1,2,3,2 ) . Result : (1,2,3 )
∗∗∗every element can be the first one due to commutativity
op member : Nat NatC → Bool .
eq member (x, (x , xs)) = true .
eq member (x, xs) = false [owise] .
reduce member(3, (1,2,3,4)) . Result : true .

Fig. 2 Succinctly defining data structures in Maude.

I covered some features that let me chose Maude for

implementing Igor 2, but Maude has much more to of-

fer. Types can be parameterized and besides functional

modules there are so-called system modules, that let you

specify and implement concurrent and non-deterministic

systems, and even object-oriented modules. Maude is

a logical framework in which more specific languages

can be modeled. It is a strictly declarative language

and includes a model checker such that properties of a

Maude program/theory can automatically be checked.

The weak points of Maude are a rather small library

with only few predefined data structures and the lack

of suitable input/output handling.
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